home *** CD-ROM | disk | FTP | other *** search
/ ftp.stepware.com / ftp.stepware.com.tar / ftp.stepware.com / are.dmg / AceReader Elite / DrillText / # Drill Text Set 1 (Partials3) / Lev 13 DrlTxt 02 02-of-08.txt < prev    next >
Text File  |  2012-12-11  |  3KB  |  7 lines

  1. A 1987 report by a DOE advisory committee provided some examples. The committee foresaw that the project could ultimately lead to the efficient production of biomass for fuel, to improvements in the resistance of plants to environmental stress, and to the practical use of genetically engineered microbes to neutralize toxic wastes. In addition, the project could have an enormous impact on our ability to assess, individual by individual, the risk posed by environmental exposures to toxic agents. We know that genetic differences make some of us more susceptible, and others more resistant, to such agents. Far more work must be done before we understand the genetic basis of such variability, but this knowledge will directly address the DOE's long-term mission to understand the effects of low-level exposures to radiation and other energy-related agents -- especially the effects of such exposure on cancer risk.
  2.  
  3. The Human Genome Project has other implications for the DOE as well. In 1994, taking advantage of new capabilities developed by the project, the DOE formulated the Microbial Genome Initiative to sequence the genomes of bacteria of likely interest in the areas of energy production and use, environmental remediation and waste reduction, and industrial processing. As a result of this initiative, we already have complete sequences for two microbes that live under extreme conditions of temperature and pressure. Structural studies are under way to learn what is unique about the proteins of these organisms -- the aim being ultimately to engineer these microbes and their enzymes for such practical purposes as waste control and environmental cleanup. (DOE-funded genetic engineering of a thermostable DNA polymerase has already produced an enzyme that has captured a large share of the several-hundred-million-dollar DNA polymerase market.) 
  4.  
  5. And other little-studied microbes hint at even more intriguing possibilities. For instance, @Deinococcus @radiodurans is a species that prospers even when exposed to huge doses of ionizing radiation. This microbe has an amazing ability to repair radiation-induced damage to its DNA, and a sequence of its genome could lead to understanding and ultimately taking practical advantage of its unusual capabilities. For example, it might be possible to insert foreign DNA into the microbe's cells that allows it to digest toxic organic components found in highly radioactive waste, thus simplifying the task of further cleanup. Another approach might be to introduce metal-binding proteins onto the microbe's surface that would scavenge highly radioactive isotopes out of solution. 
  6.  
  7. Biotechnology, fueled in part by insights reaped from the genome project, will also play a significant role in improving the use of fossil-based resources. Increased energy demands, projected over the next 50 years, require strategies to circumvent the many problems associated with today's dominant energy systems.